pFUSEN-hG2Fc

Plasmid designed for the fusion of an Fc domain to the N -terminus of a protein of interest
Catalog \# pfcn-hg2
For research use only
Version 20K09-MM-v36

PRODUCT INFORMATION

Content:

- $20 \mu \mathrm{~g}$ of pFUSEN-hG2Fc plasmid provided as lyophilized DNA
- 1 ml of Zeocin ${ }^{\text {TM }}(100 \mathrm{mg} / \mathrm{ml})$

Storage and Stability:

- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable 3 months.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable up to 1 year.
- Store Zeocin ${ }^{\mathrm{TM}}$ at $4^{\circ} \mathrm{C}$ or at $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.

Quality control:

- Plasmid construct has been confirmed by restriction analysis and sequencing.
- Plasmid DNA was purified by ion exchange chromatography and lyophilized.

GENERAL PRODUCT USE

pFUSEN-Fc is a family of plasmids developed to facilitate the construction of Fc -fusion proteins where the immunoglobulin G (IgG) Fc -domain is fused to the N -terminus of the protein of interest.
pFUSEN-Fc plasmids yield high levels of Fc-fusion proteins. The level of expression is usually in the $\mu \mathrm{g} / \mathrm{mL}$ range. They can be transfected in a variety of mammalian cells, including myeloma cell lines, CHO cells, monkey COS cells and human embryonic kidney (HEK) 293 cells, cells that are commonly used in protein purification systems.
A choice of cloning sites is provided to allow flexibility in the design of the fusion linker: either use pFUSEN linker, or bring forth your own linker with the protein of interest.
pFUSEN-Fc plasmids allow the secretion of Fc-Fusion proteins. They contain the human IL2 signal sequence (IL2ss). As Fc-Fusion proteins are secreted, they can be easily detected in the supernatant of pFUSEN-Fc-transfected cells by SDS-PAGE. Furthermore, functional domains can be identified by immunoblotting and ligand blotting.
Fc-Fusion proteins can be easily purified by protein A or protein G affinity chromatography.
InvivoGen provides $\mathrm{pFUSEN}-\mathrm{Fc}$ vectors featuring Fc regions from different species and isotypes. In humans, three options are available: $\operatorname{IgG1}$, IgG1e2, or IgG2. The Fc region mediates effector functions, such as antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). IgG isoforms exert different levels of effector functions. The engineered IgGle2 contains mutations in the FcRn binding sites leading to higher FcRn binding affinity and reduced pH dependence.

PLASMID FEATURES

- Human IgG2-Fc : The Fc region comprises the CH2 and CH3 domains of the IgG 2 heavy chain, with the hinge region. The first and second cysteines of the hinge have been replaced by serines to prevent detrimental disulfite bridges. The last amino acid (lysine) of the Fc region has been replaced by an alanine for better fusion result.
Human IgG2 dispays low ADCC and CDC.
- hEF1-HTLV prom is a composite promoter comprising the Elongation Factor-1 $\alpha(E F-1 \alpha)$ core promoter ${ }^{1}$ and the R segment and part of the U5 sequence (R-U5') of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat ${ }^{2}$. The EF- 1α promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo. The R-U5' has been coupled to the EF- 1α core promoter to enhance stability of RNA.
- IL2 ss: The IL2 signal sequence contains 20 amino acids and share common characteristics with signal peptides of other secretory proteins. The intracellular cleavage of the IL2 signal peptide occurs after Ser20 and leads to the secretion of the fusion protein.
- Cloning sites \& fusion linker: The protein of interest can be cloned either as a BamHI - NheI fragment, or as an EcoRV - NheI fragment, or as a BsiWI-NheI fragment. With BamHI or EcoRV cloning, the protein of interest will be separated from the Fc-domain by a flexible linker ($\mathrm{Gly}_{4} \mathrm{Ser}$ dimer). With BsiWI cloning, the flexible linker will not be retained, allowing for a different fusion design.
The provided cloning sites are compatible with many other enzymes, thus facilitating cloning.
- SV40 pAn: the Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA ${ }^{3}$.
- ori: a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- CMV enh / hFerL prom: This composite promoter combines the human cytomegalovirus immediate-early gene 1 enhancer and the core promoter of the human ferritin light chain gene. This ubiquitous promoter drives the expression of the Zeocin ${ }^{\text {"' }}$-resistance gene in mammalian cells.
- EM2KC is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli. EM2KC is located within an intron and is spliced out in mammalian cells.
- Zeo: Resistance to Zeocin" is conferred by the Sh ble gene from Streptoalloteichus hindustanus The same resistance gene confers selection in both mammalian cells and E. coli.
- BGlo pAn: The human beta-globin 3'UTR and polyadenylation sequence allows efficient arrest of the transgene transcription ${ }^{4}$.

1. Kim DW et al. 1990. Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. 91(2):217-23.
2. Takebe Y. et al. 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment
of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72.
3. Carswell S. \& Alwine JC. 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58.
4. Yu J. \& Russell JE. 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human beta-globin mRNA. Mol Cell Biol. 21(17):5879-88.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}$. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or in other commonly used laboratory E. coli strains, such as DH5 α.

Zeocin ${ }^{\text {TM }}$ usage

This antibiotic can be used for E. coli at $25 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media and at $50-200 \mu \mathrm{~g} / \mathrm{ml}$ to select Zeocin ${ }^{\mathrm{TM}}$-resistant mammalian cells.

RELATED PRODUCTS

Product	Catalog Code
Zeocin $^{\text {m" }}$	ant-zn-1

PvuI (7)
Sgfi (6)
1 GGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTA

101 GAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCC

HpaI (1509)

1501 AATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTG AseI (1607)
XmnI (1605)
AlwNI (1699)
1601 GTATGGAATTAATTCTAAAATACAGCATAGCAAAACTTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATC
\qquad
SapI (1791)
1701 AGGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGCCTCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCAT

1801 SspI (1848) SwaI (1862)
1801 TTCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTTTAGTAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTT
1901 ATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAA
DraIII (2041) EagI (2061)
2001 GAAAGCGAGCTTCTAGCTTATCCTCAGTCCTGCTCCTCTGCCACAAAGTGCACGCAGTTGCCGGCCGGGTCGCGCAGGGCGAACTCCCGCCCCCACGGCT
 2101 GCTCGCCGATCTCGGTCATGGCCGGCCCGGAGGCGTCCCGGAAGTTCGTGGACACGACCTCCGACCACTCGGCGTACAGCTCGTCCAGGCCGCGCACCCA
 SgrAI (2277)
2201 CACCCAGGCCAGGGTGTTGTCCGGCACCACCTGGTCCTGGACCGCGCTGATGAACAGGGTCACGTCGTCCCGGACCACACCGGCGAAGTCGTCCTCCACG
 XmaI (2304) BsrBI (2340) BssHII (2356) MscI (2391)
2301 AAGTCCCGGGAGAACCCGAGCCGGTCGGTCCAGAACTCGACCGCTCCGGCGACGTCGCGCGCGGTGAGCACCGGAACGGCACTGGTCAACTTGGCCATGA
 AseI (2491)
2401 TGGCTCCTCctgtcaggagaggaaagagaagaaggttagtacaattgCTATAGTGAGTTGTATTATACTATGCAGATATACTATGCCAATGATTAATTGT

2501 CAAACTAGGGCTGCAgggttcatagtgccacttttcctgcactgccccatctcctgcccaccctttcccaggcatagacagtcagtgacttacCAAACTC ——
HindIII (2618) SacII

2601 ACAGGAGGGAGAAGGCAGAAGCTTGAGACAGACCCGCGGGACCGCCGAACTGCGAGGGGACGTGGCTAGGGCGGCTTCTTTTATGGTGCGCCGGCCCTCG
2701 GAGGCAGGGCGCTCGGGGAGGCCTAGCGGCCAATCTGCGGTGGCAGGAGGCGGGGCCGAAGGCCGTGCCTGACCAATCCGGAGCACATAGGAGTCTCAGC
SpeI (2883)
Bsp120I (2875)
2801 CCCCCGCCCCAAAGCAAGGGGAAGTCACGCGCCTGTAGCGCCAGCGTGTTGTGAAATGGGGGCTTGGGGGGGTTGGGGCCCTGACTAGTCAAAACAAACT
\qquad
2901 CCCATTGACGTCAATGGGGTGGAGACTTGGAAATCCCCGTGAGTCAAACCGCTATCCACGCCCATTGATGTACTGCCAAAACCGCATCATCATGGTAATA

SnaBI (3011)

3001 GCGATGACTAATACGTAGATGTACTGCCAAGTAGGAAAGTCCCATAAGGTCATGTACTGGGCATAATGCCAGGCGGGCCATTTACCGTCATTGACGTCAA

NdeI (3116)

3101 TAGGGGGCGTACTTGGCATATGATACACTTGATGTACTGCCAAGTGGGCAGTTTACCGTAAATACTCCACCCATTGACGTCAATGGAAAGTCCCTATTGG

3201 CGTTACTATGGGAACATACGTCATTATTGACGTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATTTACCGTAAGTTATGTAACGCCTGCA | PstI (3295) |
| :--- |
| (3294) |

PacI (3302) BspLU11I (3312)
3301 G GTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGA

3401 GCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCT ITCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTACGTATCTCAGTTCGGTGT
3501 GTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGT

3601 AGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAG

AlwNI (3723)
3701 ACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTAC
3801 GGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCG
3901 CTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCA

EagI (4062)
PacI (4042) SwaI (4051) NotI (4061)
4001 GTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATCAGCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGT
4101 GTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGC 4201 AGGTGCCAGAACATTTCTCTATCGAA

